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I. Introduction

The propagation of an electromagnetic wave into an inhomogeneous plasma

(1)0

was first studied by Budden in a plasma with large density gradients

a QTX mode prop§gating perpendicular to the magnetic field can encounter a
resonance and a cutoff separated by a distance éomparable to the incident

wave length. - In this region the wave i; évanescent, and in general there

will be a reflected and a transmitted wave, an& amplification.will occur in

the region near the resonance. The amplification is important for the ° “
study of noﬁlinear phenomena aﬁd-for feedbaék stabilization applications.

Consider the propagation of a QTX mode in the x-direction. We begin

~with the differential equation for Egtx)

—_— 2., T o S el 2 _ 2 ] - »»C!..(:l —u-)
dX2 A K (X)E =0 with "K o= ko [ 1 ';' m}
e 9 12 %
and: k0.= T a = [ m ‘] B = &2 <1

. Cutoff occurs when o = 1 - /B and resonance when o = 1 - B. Assume the

\ .
'special case of Budden, i.e. -

: : X o A
1+ Eli:ﬁl.= 1+ 2 , which leads to Whittakers equation.
B+a-1 X ;

|

1 K.G.. Budden, Radio Waves in the Ionosphere (Cambridge University Préss), 1966.
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'Fig. 1. Plasma density a(x) = (wp/w)2 as a function of position. ‘
. o /

Setting z = kOx and zy = kox0 we find ) . /
: . j
42 z /
4E, [1 + ;QJ E=0 . /
z2 oz

- d
Thus the problem has essentially only one parameter, - In terms of physical

variables
s mff»_—a(—xo) i /B8 . }
dx6= X Xy ; ‘
|
" And thus . ;
(/B-8) /
07 ™0 " da
dx) ‘
Also
2 w 2 w 2
dd  l4me” dn _p |[dnl | _"p 1 ‘
- 2 X n - w2 L ’

where L is the scale length of the density gradient
;

‘II. Integral Solution
2. .oz -

d E + [ 1+ Eg ] E =0, we have as an integral solution(.)
dz

Given

~?A. Baios (unpublished); G.M. Weyl, Phys. Rev. Lett. 25, 1417 (1970); H.L. Berk
and L.D. Perlstein, UCRL Preprint 72536. ) _



E(z) = z J e—1zt(t_l)+1(20/2)(t+l)-_i(20/2)dt
' ., C
Equivalently, let 2w =t + 1-

W~ 2=t-1

1]
o+

y
-

2w - 1)

-

» E(z) o z f e-izczw-l)(w_.l):"i(ZO/Z)w'i(ZO/Z)dw

) C
Proof
E=2z j e 12t (t-1)%(t+1) "%t L a =+ i(zg/2)
- 'r .
B = | it - 1zt)etPr(e-1) ¥ (ee1) Pat ;
c i
f 21 . 2 izt _ »
"+ |1 - -%EJ E = J (-2it - 2ia - zt° + 2)er P (t-1)2(t+1) dt
-

a+l

Let  F(t) = -ie 1Zf(e-1)®*(re1)l-2

dF [ . a+l l-a ) . ,i
-iz + F .

at - 1"t ,
- : ~ 7 /Vb
= [iz(t51) + (as1)(t+1) + (1-a) (e-1)] -iie'iZt(t-l)?(“”;a]

/
Jo~
I

Thus . : !

' 2ia | _ [ dF
E" + [ 1- =2 ]E = J Tdt
c

and the integral representation .will give a solution provided that F(t) (the

“bilinear concomittant) vanishes at the. end points of the contour, i.e. for

2> 0 ot -je , 1

z2< 0 |t +ie [, *]



~We thus have an integral representation for the field
: E(z) = ze't? J es(w)dw
: ' z
' s 0 w-1
S(W) —"l [2\”{" Vil _21’1 w

. with possible contours of integration given by

ol
T
———

Further notice that for |z] > = the major contribution to E comes from Im w % 0
3AandthusﬂLasympﬁoticqbeh&uiarawidd;bewea%cu%abgdﬁexact$y~%a%er)

E-(z) > ¢ et 12 right moviﬁg
I 1 :
z2>0 -iz '

EII(Z) > ¢y left mgv;ng

. +iz
Erpp(2) > cqqqe

right moving

2 <0 -iz
EIv(z) > Cpy® left moving

J . ) f

There is also one contour in the finite plane.enéircling both branch points
which gives a solution. However a secoﬁd indepe;dent finite-plane contour
does not exist and this representation is therefore ndf usefui;
For boundary conditions we choose for z ;?f)EI(z), i.e. é transmitted

right moving wave. Thus for z) 0 we have the contour T,

1
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To analytically continue to z < 0 we are restricted to the LHP in z. (This
can be demonstrated to be necessary by including a small collision frequency in
the problem). Thus to keep the integral convergent we must rotate the contour

.cew as z is rotated clockwise. Thus the contour II becomes successively

and thus EI becomes after continuation.to 2z <f0:

§ = &(-d*) « EL

ITI. Asymptotic Values

2,

: - [
: . [ ] L .
| Fe) = ze \e () Faw
A\ - , : R'Y;
\ ' - "
\ o .
" A, zZ > 0: ' We are 1interested in EI' The major contribution comes for
\ ' . _
Imnw;SO let w = -iv. It is trivial to show that the semi-circle part of the

y
contour gives no contribution. .We are then left with



| | iR
(& -VE _fo

Where e contour® 14 the V- pPlare ks _.é«u

This  gives

_i//;z’(a-)/ > e g TEy )//1// m/

B. z<L£0 We calculate first EIII’ the incoming amplitude. w = +iv
\ oz _ave,  iEe
bg) » Ze \e (v)

ol > FET [r0- 3

Finally to calculate EIV_take 'w_- 1 = +iv : - - i

/5\/(%)/ —> éT // °)//7//+‘*°f

\
\
\

\.
\ ‘ : - -~ ~TTZ
Thus' the transmission coefficient ,Tl = /t_[/ = @ -—io
AN | =
T | -T2,
and reflection )R’ = ,’EE}{@WQO_/ : = j-é °

- } Em|
which are the values glven by Budden.
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C. z-% 0 We calculate the value of the field E. near z = 0. Distort

I
the contour as shown and break the integral into three parts:

1. A-circle of radiué i - € about w = o,
€ a small positive number.

2. The two pieces of contour with
—l;e < Imw < -1+e

,3‘ Imw < -l+¢

Then it can easily be shown that the contribution to the second part is

bounded by e€zM, M a fixed number, and the contribution from the circular

o

part of the integral is bounded by zN, N a fixed num@ér. ‘The third part of

€

- the contour yields, for ¢ arbitrarily small _ /

./-
/

E;(0) = :% (1-e"%) /

It is then easy to calculate Ex(z), which becomes infinite at z = 0 in

f
!

the absence of collisions.

Including a collision frequéncy we have - >;
’ ‘ .f . )
~od LS
[ | =

(317"&-1 rislx-2)
I’ .

i

| 2
kel = ¥
e=Y << :

S =
W
The collision frequency produces an insignificant change in Ey’ but as E*

is given by
A (L N
/) - o - ——;i(s—a)

we have, for z = 0

M

Elo) = - (0= p) £,0)
S(;f/%)
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"~ Application to a specific problem
We. calculate the field in the vicinity of the resonance for physical

1v.
parameters corresponding to experiments presently under way at UCLA under the

direction of F. Chen.

We take as initial data

A = 3.3 F ‘;(/OJI cHA

‘Laser
Density n - R x /0 /49 L i | .
Electron - w/} ‘{ o L9

. | 7GL = & Wits ) o o =
Scale length L. = W5 emt T /
S

Arc 45 K 3«&-&5

. Thus .
. -A ’ l
Wy ?—x/o”“ ! [
’ /
B -‘4/,'0 ’ . . Do
wW. = § 0 '

u) = G 7(/0’1
' ¢

[) = /.9 x/D

de _ a./

—

dXx

A direct on-line calculation of the field uSing the integration contours shown

]

was carried out. The data is piotted'in Fig.vz on a scale where the initial -

:/‘

incoming field is normalized to 1.




The author would like to acknowledge helpful discussions with

A. Bafios and:F._Chen.
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. Incoming lEy[ is normalized to 1.
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